Neo中的BloomFilter

布隆过滤器

布隆过滤器(英语:Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。

布隆过滤器 (Bloom Filter)是一种space efficient的概率型数据结构,在垃圾邮件过滤的黑白名单方法、爬虫(Crawler)的网址判重模块中等等经常被用到。哈希表也能用于判断元素是否在集合中,但是布隆过滤器只需要哈希表的1/8或1/4的空间复杂度就能完成同样的问题。布隆过滤器可以插入元素,但不可以删除已有元素。其中的元素越多,false positive rate(误报率)越大,但是false negative (漏报)是不可能的。

基本概念

如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定。链表散列表(又叫哈希表,Hash table)等等数据结构都是这种思路。但是随着集合中元素的增加,我们需要的存储空间越来越大。同时检索速度也越来越慢,上述三种结构的检索时间复杂度分别为 O(n),O(log n),O(n/k)

布隆过滤器的原理是,当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点,把它们置为1。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些点有任何一个0,则被检元素一定不在;如果都是1,则被检元素很可能在。这就是布隆过滤器的基本思想。

算法描述

  1. 一个empty bloom filter是一个有m bits的bit array,每一个bit位都初始化为0。并且定义有k个不同的hash function,每个都以uniform random distribution将元素hash到m个不同位置中的一个。在下面的介绍中n为元素数,m为布隆过滤器或哈希表的slot数,k为布隆过滤器重hash function数。
  2. 为了add一个元素,用k个hash function将它hash得到bloom filter中k个bit位,将这k个bit位置1。
  3. 为了query一个元素,即判断它是否在集合中,用k个hash function将它hash得到k个bit位。若这k bits全为1,则此元素在集合中;若其中任一位不为1,则此元素比不在集合中(因为如果在,则在add时已经把对应的k个bits位置为1)。
  1. 不允许remove元素,因为那样的话会把相应的k个bits位置为0,而其中很有可能有其他元素对应的位。因此remove会引入false negative,这是绝对不被允许的。
  2. 当k很大时,设计k个独立的hash function是不现实并且困难的。对于一个输出范围很大的hash function(例如MD5产生的128 bits数),如果不同bit位的相关性很小,则可把此输出分割为k份。或者可将k个不同的初始值(例如0,1,2, … ,k-1)结合元素,feed给一个hash function从而产生k个不同的数。
  3. 当add的元素过多时,即n/m过大时(n是元素数,m是bloom filter的bits数),会导致false positive过高,此时就需要重新组建filter,但这种情况相对少见。

优点

相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。布隆过滤器存储空间和插入/查询时间都是常数(O(k))。另外,散列函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。

布隆过滤器可以表示全集,其它任何数据结构都不能;

缺点

但是布隆过滤器的缺点和优点一样明显。误算率是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣。

另外,一般情况下不能从布隆过滤器中删除元素。我们很容易想到把位数组变成整数数组,每插入一个元素相应的计数器加1, 这样删除元素时将计数器减掉就可以了。然而要保证安全地删除元素并非如此简单。首先我们必须保证删除的元素的确在布隆过滤器里面。这一点单凭这个过滤器是无法保证的。另外计数器回绕也会造成问题。

在降低误算率方面,有不少工作,使得出现了很多布隆过滤器的变种。

举例说明布隆过滤器的空间优势

先来一个结论:对于一个有1%误报率和一个最优k值的布隆过滤器来说,无论元素的类型及大小,每个元素只需要9.6 bits来存储。这个优点一部分继承自array的紧凑性,一部分来源于它的概率性。如果你认为1%的误报率太高,那么对每个元素每增加4.8 bits,我们就可将误报率降低为原来的1/10。add和query的时间复杂度都为O(k),与集合中元素的多少无关,这是其他数据结构都不能完成的。k是hash函数的个数。

举例: 现有1亿个email的黑名单,元素的数量(即email列表)为 108。若采用布隆过滤器,取k=8(k为hash函数个数)。因为n为1亿,所以总共需要8*108。又因为在保证误判率低(后面解释)且k和m选取合适时,空间利用率为50%(后面会解释),所以总空间为

空间优势

所需空间比上述哈希结构或者数组小得多,并且误判率在万分之一以下。为什么可以这样算,可以看下面。

误判概率的证明和计算

该过程的详细说明来自于这个文章http://www.cnblogs.com/allensun/archive/2011/02/16/1956532.html,为了看懂求导过程,需要复习数学知识。

对某一特定bit位在一个元素由某特定hash function插入时没有被置位为1的概率为:

则k个hash function中没有一个对其置位的概率为:

如果插入了n个元素,但都未将其置位的概率为:

则此位被置位的概率为:

现在考虑query阶段,若对应某个待query元素的k bits全部置位为1,则可判定其在集合中。因此将某元素误判的概率为:

由于

,并且1/m 当m很大时趋近于0,所以

现在计算对于给定的m和n,k为何值时可以使得误判率最低。设误判率为k的函数为:


则简化为

因为等式右边的底数上是函数,指数上也是函数,没有方法求这样组合函数的导数,只能取对数之后,变成乘法。我们有两个函数相乘的求导方法,求导的几个方法可以看参考资料,有很好的视频说明。

两边取对数得

两边对k求导得,这边涉及到乘法求导,对数求导,幂函数求导:

下面求最值,

红圈中的等式是把两边看成xln(x)这种形式得到的,和该函数的单调性相关。数学上能不能这么操作我还不太清楚。数学好的大神可以留言解释一下。

因此,即当

时误判率最低,此时误判率为:


可以看出若要使得误判率≤1/2,则:

这说明了若想保持某固定误判率不变,布隆过滤器的bit数m与被add的元素数n应该是线性同步增加的。

设计和应用布隆过滤器的方法

应用时首先要先由用户决定要add的元素数n和希望的误差率P。这也是一个设计完整的布隆过滤器需要用户输入的仅有的两个参数,之后的所有参数将由系统计算,并由此建立布隆过滤器。

系统首先要计算需要的内存大小m bits:

再由m,n得到hash function的个数:

至此系统所需的参数已经备齐,接下来add n个元素至布隆过滤器中,再进行query。
根据公式,当k最优时:



因此可验证当P=1%时,存储每个元素需要9.6 bits:


而每当想将误判率降低为原来的1/10,则存储每个元素需要增加4.8 bits:


这里需要特别注意的是,9.6 bits/element不仅包含了被置为1的k位,还把包含了没有被置为1的一些位数。此时的

才是每个元素对应的为1的bit位数。

从而使得P(error)最小时,我们注意到:

中的
,即

此概率为某bit位在插入n个元素后未被置位的概率。因此,想保持错误率低,布隆过滤器的空间使用率需为50%。

Neo中的布隆过滤器

上面的内容大部分抄袭http://www.cnblogs.com/allensun/archive/2011/02/16/1956532.html,原作者写的太好了,我只是加上一些我的理解,方便数学不好的道友理解。下面我们看看Neo中的Bloom Filter。

using System.Collections;
using System.Linq;

namespace Neo.Cryptography
{
    public class BloomFilter
    {
        private readonly uint[] seeds;
        private readonly BitArray bits;

        public int K => seeds.Length;

        public int M => bits.Length;

        public uint Tweak { get; private set; }

        public BloomFilter(int m, int k, uint nTweak, byte[] elements = null)
        {
            this.seeds = Enumerable.Range(0, k).Select(p => (uint)p * 0xFBA4C795 + nTweak).ToArray();
            this.bits = elements == null ? new BitArray(m) : new BitArray(elements);
            this.bits.Length = m;
            this.Tweak = nTweak;
        }

        public void Add(byte[] element)
        {
            foreach (uint i in seeds.AsParallel().Select(s => element.Murmur32(s)))
                bits.Set((int)(i % (uint)bits.Length), true);
        }

        public bool Check(byte[] element)
        {
            foreach (uint i in seeds.AsParallel().Select(s => element.Murmur32(s)))
                if (!bits.Get((int)(i % (uint)bits.Length)))
                    return false;
            return true;
        }

        public void GetBits(byte[] newBits)
        {
            bits.CopyTo(newBits, 0);
        }
    }
}

前面讲了这么多,代码竟然这么短,分析分析。

  1. 构造函数传入了m(多少位),k(hash函数种类),这个和我们前面分析根据p(错误率),和n(要插入的元素)来构造的思路不一样。所以Neo的这个版本应该是一个简化版本,输入的数据n应该是有范围的,具体的范围我们后面运行整个区块链的时候在观察,现在不知道n的个数有多大。
  2. hash函数使用了Murmur32,然后传入不同的seed模拟不同的hash函数,这个是可以的。
  3. 使用linq,函数式编程代码非常简洁,这也是C#的一个优势啊。
  4. add,check函数都很容易看懂,确实实现很简洁。

总结

Bloom Filter是牛逼的数据结构,因为有很多数学知识在里面,虽然代码不长,但是能看完这篇文章的人,会感受到代码之美。

参考资料

布隆过滤器
知乎里面关于e的讨论
An Intuitive Guide To Exponential Functions & e
Bloom Filters – the math
布隆过滤器 (Bloom Filter) 详解
What is MurmurHash3 seed parameter?
数学学习资料
各种字符串Hash函数
怎样在 Markdown 中使用数学公式
对数求导公式
导数法求函数最值

作者:沈寅
链接:https://www.jianshu.com/p/d98f40653dae
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

发表评论

Top